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Abstract—The paper demonstrates how combined fracture and damage mechanics may be used to
establish a fatigue damage model for polycrystalline materials in a stress-controlied test. Damage
is defined as the product of the longest or “equivalent™ surface crack length and the accumulated
strain range, both taken with certain exponents which are found from loading conditions and failure
criterion. The short to long crack transition is described through El Haddad's redefined stress
intensity factor at threshold, while the failure is determined by the behaviour of the major crack.

The quality of the results is encouraging. Even though some partial comparisons with already
published results are presented, the model is yet to be subjected to more extensive experimental
verification,

. INTRODUCTION

Fatigue crack propagation and fatigue damage of structural components have become
subjects of unguestionable relevance. However, most of the rescarch efforts are separated
into several ficlds such as fracture mechanics, damage mechanics, fatigue etc., while com-
bined efforts are missing, This paper presents an essential part of the results of an attempt
at such combination (Pasi¢, 1990).

A large part of the fatigue life of metallic structures is related to a sequence of processes
during which localized strains, slip bands and microcracks initiate and develop until the
macroscopic crack that leads to fracture is formed. The life is therefore controlled by a
complex crack-growth phenomenon (Kitagawa et al., 1979 ; Suh et al., 1985, 1990 ; Magnin
et al., 1989). It is very difficult to describe analytically this progressive material deteriora-
tion and growth of individual cracks and their systems. Thercfore, some global measures
are needed for description of these processes. On this line many analytical models have
been developed (see for example Collins, 1981). Unfortunately, most of them are purely
phenomenological.

Depending on the point of view of the authors of fatigue~failure models which pretend
to be based on physical grounds, they are founded on either microscopic or macroscopic
variables. The first type is based on a crack length as a critical variable (Miller and de los
Rios, 1986), whilc the second one uses a damage variable as a global measure of the material
degradation (Chaboche, 1988). The first approach is an attempt to extend the application
of fracture mechanics to very short cracks, while the second one is an attempt to gencralize
continuum damage mechanics (Lemaitre and Chaboche, 1984 ; Krajcinovic and Lemaitre,
1987). In fact, as shown by Cailletaud and Levaillant (1984) there could be implicit con-
nections between the continuous damage purameterization and the crack length used in
fracture mechanics. The model developed here may be considered as a combination of those
models.

To bridge the gap the first step is a mathematical description of short to long crack
transition at threshold in terms of number of cycles. Next, damage is defined as the product
of the longest surface crack length and the accumulated strain range, both taken with
certain exponents which are to be found from loading conditions, failure criterion etc. The
quality of the results is encouraging.
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2. SHORT TO LONG CRACK TRANSITION

Long cracks are monitored in LEFM-type specimens in such a way that a crack is
inserted in a specimen before testing. The initial crack length is typically a few millimeters
long and its further growth is obtained by integrating the crack growth rate described by
the Paris Law (Hertzberg. 1988):

da C,AK™ |
d\’— (1)

where C, and m are the material constants, V is number of ¢ycles and AKX is the stress
intensity factor range

AK = C:A0 na. 2)

where Ao and C, are the applied stress range and the crack geometry constant.

However, many engineering components do not contain big flaws such that the period
of the first crack development may consume an important part of its life before the crack
becomes long. It has also been found that under the same driving force the growth rates of
short cracks are greater than the corresponding rates of long cracks (Miller, 1982 ; Miller
and de los Rios, 1986 Suresh and Ritchie, 1984). This suggests that the use of data for
long cracks in defect-tolerant lifetime predictions for structural components can lead to
considerable overestimates. Interpretations of big differences between large endurance limits
of plain specimens and tow endurance limits of notched specimens have not become possible
until recently because of the luck of information on the short crack behaviour (Miller,
1987).

Recognizing the fact that the short crack behaviour requires an clastoplastic analysis,
Kitagawa and Takahashi (1976) have proposed a single approach that combines both
LEFM and EPFM at threshold (Fig. 1). The line given by AK,, represents the long crack
threshold condition. But for shorter cracks to propagate, higher loads must be applied and
small scule yielding conditions for validity of LEFM violated. This happens to be the case
when Aa exceeds about 2/3 of the cyclic yield stress o, in a reversed stress test (when the
stress ratio is R = — 1). The horizontal bounding line in the diagram is the fatigue limit of
the plane specimen Ag, = Ao,,. The shaded area in Fig. | corresponds to the so-called
microstructurally short nonpropagating cracks (MSC). Experimental studies indeed clearly
show that threshold stresses for long and short cracks are different (Tanaka er al., 1981),
and the Kitagawa-Takahashi diagram shows thut the threshold condition for long crack
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propagation is a constant stress intensity. while the same condition for short cracks is a
constant stress Ag,.

In rationalizing the behaviour of long and short cracks with respect to the threshold
condition. El Haddad et al. (1979) proposed redefinition of the stress intensity factor, such
that for both long and short cracks at threshold (Fig. 1):

AK = C.Ac /m(a+ay) 3)

instead of eqn (2). The so-called intrinsic crack length a, is then obtained from eqn (3)
from the condition that Ac tends to As, as the crack length a approaches zero (Fig. 1),

therefore being
1 (AK,Y
= - . 4
ay TE(AO’,> 4

The new definition is a completely empirical one since the parameter a, has no physical
- significance. On the other hand, Tanaka and co-workers (1981) have shown that El Had-
dad’s approach is a special case of their slip band model, such that, in this light, El Haddad’s
model may be viewed as not being purely empirical—see also Suresh and Ritchie (1984).
The earliest crack growth experiments had shown that in general da/dV versus AK curves
are of the form shown in Fig. 2, and that the Paris Law, eqn (1), does not hold at threshold—
below which cracks do not grow or grow very slowly, say at rates of the order of 10°'°
my/cycle. Empirically, growth rates in that region can be described as (Allen et al., 1988):

da . . m
(IN = Z~I(AA_AAIII) ) (5)

where the value AK,, strongly depends on the mean stress, i.e. the load ratio R. Xiulin
(1987) shows the applicability of eqn (S) with m = 2 to such diverse materials as b.c.c. high-
strength low-alloy steels, f.e.c. aluminum and h.c.p. titanium alloys.

In the threshold region sizes such as the plastic zone or the crack tip openings are of
the same order as the microstructural features such as grain size, for example. Therefore
the crack growth mechanisms and growth rates at threshold are strongly influenced by the
microstructure. At the transition point AK = AKX, (Fig. 2), the crack growth rate curve
starts to deviate from the straight line in the logarithmic plot. Below AK = AK, the growth
rate decreases rapidly and the crack stops its propagation at threshold. Liu and Liu (1982,
1984) examined fifty fatigue crack propagation data for steels and aluminum alloys and
found the empirical relation
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Fig. 2. Fatigue crack growth rate versus stress intensity range.
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AK, = (0.7F0.1)AK,. (6)

In the threshold region when the cyclic plastic zone size r_ is of the grain size, the micro-
structural features such as grain boundaries serve as dislocation barriers and impede plastic
deformation. Yoder et al. (1982) suggested that at the transition point r. = [ where [is the
mean free path of dislocation movement which is, for many materials, of the grain size. In
the hypertransitional region r, > ['and a structure-insensitive or continuum mode of crack
growth results. In their “unzipping model™ Liu and Liu (1982) have shown thatat AK < AKX,
the shear decohesion. by which the fatigue crack grows, is caused by the combined effects
of stress relaxation and cyclic creep. In Liu and Liu {1984) the same authors took the net
driving force as proportional to (AK—AK,,)”. such as in eqn (5), with m = 2 as in Xiulin
(1987). It is very interesting that Navarro and de los Rios (1987), applying the crack model
of Bilby, Cottrell and Swinden have also analytically derived eqn (6) with no adjustable
parameters!

Starting with the new definition (3) for the stress intensity factor at and close to
threshold. then using egns (4) and (5) and introducing :

a,—ar

=

8
I

Q
5

)

Y= Ut dy, P =dp—dr, =, &=—" 8, = .
! r 4=y ro ap—dar

where the indexes F, T and [ stand for crack lengths at “failure™, “threshold™ and “initial™
(Fig. 2), such that the normalized crack length a, < a < 1, the following crack growth
cquation results

~da = A, \/a+q~«\/q)"‘ dN. (8)
where
Am = C;(Cg \/7;)"'7‘”‘[2 - !Adm. (())

Double integration of (8), once from the initial crack length a, to an arbitrary crack length
a while the number of cycles runs from N, to N, and the second time, when a, < a < | while
N; < N < N, (Fig. 2), and taking N, = 0, one obtains:

| .

N= B’"(f(a)“/(an)) (10)
I

Ny = E"(l(l)—f(au))- (1

Therefore the normalized life is:

N _ f@)—/f(a,)

AP AT/ Wb 12
NS P <) 12

where, depending on the coctlicient me:

(a)y il e = 2,

B, = A2 fa) =In(Jatq—VD—/a/(Sata—JD;
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(b)ifm =2

B, = A, (m— l)2(m—2)

(I—m),/a+q+\/;
(Va+q—Jo "

Equation {12) could be numerically solved for the sct of parameters m, a, and ¢, and an
cxample of such a calculation is shown in Fig. 3.

A typical value for ¢ may be judged from cqns (3). (6) and (7). Namely, identifying
the point F (failure) with the transition point (Fig. 2), eqn (6) leads to AK,/AK, = 0.7.
Taking 0.7° = 0.5 it follows that ap = 2ug+a, and ¢ = 1. Integration of eqn (8) beyond
the transition point docs not change the specimen life significantly. For example, Hobson
(1982) simply takes ap = 1 mm: the length normally considered to correspond to long
cracks. Therefore the value ¢ = 1 scems to be reasonably well estimated.

. Sf@ =

3. DAMAGE MODEL

Let us assume that the series of stress-controlled experiments is made on several
specimens at different stress levels but for all them cycled up to the same number of cycles
(Fig. 4). As the number of cycles N is increased from Ny = 0 to N = N, at failure, the
stress-strain diagram due to fatigue-creep strain accumulation will be of the form shown
in Fig. 5. Assuming that the stress range exceeds its value at threshold (Ag ), the specimen
will eventually be broken for any Ac > Ag, sooner or later, depending on stress level after
Ny cycles (Fig. §).

Let us further assume that beyond the threshold (7)) the strress-strain dependence, at
a certair (constant) number of cycles N in a stress-controlled experiment may be described
by (Fig. 5):

a6

4t

Fig. 4. Cyclic stress—strain range curve for N = const.
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Fig. 5. Fatigue creep strain accumulation.

Ag = E(1 - D)Ae, (13)

where Ao = Aag—Aa, is applied (constant) stress range beyond threshold, As(N) =
Ae(N)— A« is total strain range beyond threshold, 2 = D(N) is damage, E, is virgin
material Young's modulus. £ = £,(1 — D) may be considered as being the new modulus of
damaged material (Fig. S).

Next, let us define the damage. Fatigue damage mechanisms are very complex but they
generally start at the surface of the material. The crack initiation is closely related to the
localized strain produced by cycling and then, depending on the microstructure, various
mechanisms take place up ta the faiture. The possible crack sites are found to be persistent
slip bands (PSB), sccond-phase particles or, less frequently, at grain boundarics.

Liv er al. (1990) have recently studied surface fatigue damages in polycrystalline copper
plain specimens at intermediate total strain levels (between low- and high-cycle fatigue).
They found three types of damage: slip buands and twin and grain boundary microcracks,
the great majority of which were confined to surface grains. Even in the intermediate region
the life fraction to nucleate a surface crack of the three-grain-facets length was 75% to
90%, suggesting that a large fraction of the life is spent in nucleating a fatal crack on the
surface. Finally, they found that at higher strain amplitudes fatal cracks are predominantly
intergranular, while at low strain amplitudes most of the fatal surfuce cracks are formed
by linking the transgranular PSBs in the adjoining grains by grain boundary cracks.

The crack development into the depth of polycrystalline materials commonly follows
two distinct phases : (a) Stage I (Mode 11, or shear mode) corresponds to the development
of very small cracks within the few surtuce grains, following the PSBs in the maximum
shear stress direction, and (b) Stage I (Mode 1, striation mode) characterized by faster
growth of a few microcracks that propagate transgranularly faster than the others in a
planc perpendicular to the applied stress direction. The appearance of such a long crack
corresponds to the failure of the loaded component. Fracture mechanics approaches
cannot be applied to the evaluation of the growth behaviour of Stage [ cracks. Brown and
Ogin (1985) have found that the volume fraction of PSBs (associated with Stage I cracks),
is closely related to the applied strain amplitude for varicty of polycrystalline materials.

The carly growth of short fatiguc cracks in polycrystalline materials follows the pattern
of repeated surface crack nucleation and linkage, since near the free surface the PSBs
produce very large (with a logarithmic singularity) surface stresses with localized plastic
flow (Brown and Ogin, 1985). Macroscopic internal stresses in PSBs change sign every half-
cycle and the resulting shear stress between the band and the matrix always acts to increase
slip near one side of the PSB. i.c. assists dislocation flow and the Stage I crack nucleation.

It has long been known that damage in high-cycle fatigue is influenced by both surface
crack lengths and surface crack density (Kitagawa er al., 1979 Suh et al., 1985, 1990).
Final fracture occurs by coalescence of many randomly distributed microcracks (not by
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growth of a single crack). but is governed almost exclusively by the behaviour of the major
crack. However, Polak and Liskutin (1990) show that the same crack need not remain the
longest one within the whole fatigue life. Therefore, the authors have defined “equivalent
crack length” which is close to the temporary largest crack length with the growth rate
similar to one in Fig. 3. This crack length can be obtained if several cracks in one specimen
are grown independently. or alternatively by averaging the dependence of the longest cracks
on the cycle number measured in different specimens cycled at the same strain amplitude.

Having in mind the preceding discussion the damage model adopted here should
include the longest surface crack or the averaged “‘equivalent crack length™ as an important
parameter; from now on it will be assumed that this crack grows in accordance with the
rules described in Section 2 and eqn (12). Since the final fracture is governed by the
behaviour of the major crack the failure criterion will be the one when crack length reaches
the transitional length. i.e. when a = 1.

As has already been discussed. fatigue damage is influenced by the surface crack
density. On the other hand the crack density is a function of the volume fraction of PSBs
and. as shown by Brown and Ogin (1985). is closely related to the applied strain amplitude.
Realizing the importance of slip band formation, Kitagawa and co-workers (1979) measured
slip line distribution and their density for several mild steels and one high-strength steel.
They defined the so-called slipped-grain ratio of the slipped grains to the number of total
surface grains. The important finding is that the slipped-grain ratio is proportional to the
plastic strain range Ae, and that the macroscopically measured strain (or stress) range
seems to express the rate of local slips on the cyclically strained surface. Having all this in
mind, lct us define damage as:

D = ya*Ae”, (19)

where 7 is a constant while Az is a total strain rate beyond its threshold value (see eqn (13)).
A similar form for damage. namely the product of the average flaw length and their number
per unit volume is a characteristic measure of the loss of stiffness of brittle solids as well—
see Budiansky and O’Connel (1976) and Laws and Brockenbrough (1987), for example.
Socie et al. (1983) have discussed a varicty of forms by which the damage parameter may
be defined, such s in terms of the relative surface crack length D = g/a,; in terms of stress
drop in a strain-controlied test ; or in terms of transient strain response in a stress-controlled
test. In this light the damage model for the stress-controlled test described by eqn (14) may
be viewed as being a combination of the first and the third of these forms.

Hua and Socic (1984) have evaluated four different damage theorics in both high-
(HCF) and low-cycle fatigue (LCF) regimes in 1045 steel under constant amplitude biaxial
loading. They found that in the LCF region (N, < 10*) a number of damage nuclei were
observed and that continuum damage theories should be applicable to this life regime. They
also found that the surface-crack density parameter plays an important role but that this
parameter alone ts not a suitable measure for damage. On the other hand, in the HCF
region a single dominant crack was used to represent fatigue damage, and continuum
damage models, such as Chaboche’s, “are not expected to model the life regime dominated
by the growth of a single large crack™. It has also been concluded that the HCF regime
“none of the models can predict crack growth during the entire fatigue life” and, therefore
“surface crack length definitely cannot be used as a damage parameter™. This discussion
also suggests that a damage model having the form (14) could be a compromising solution,
because it includes both the longest crack length and crack density parameters.

The continuous damage models applied to fatigue processes have certain deficiencies.
First, due to its surface character damage is heterogeneously distributed and, second, during
the propagation period the number of large defects is small—at least in the last period of
life—which is inconsistent with a continuum approach. However, in spite of this, CDM has
been found to be a powerful tool in describing these complicated phenomena (Chaboche,
1988). It is interesting to note that Popelar and Hoagland (1986) have found the damage
model such as the one described by (13), where D is assumed to be linearly proportional
to the strain, may even be used to analyze the fracture of a double-cantilever-beam specimen
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(with a single crack) and may successfully bridge the fields of damage and fracture
mechanics.

4. RESULTS

From eqns (13) and (14) the stress—strain relationship reads :

Ao = Ey(l —ya* Ag")As. (15)
while the stress and damage are related as:
Ae = Ey(ya*)'"(1-D)D'". (16)

For a fixed value of the crack length a Figs 6 and 7 depict eqns (15) and (16) for several
values of the yet unknown parameter ».

Extreme values for the curves in Figs 6 and 7 are found from eqns (15) and (16) such
that the damage, strain range and stress range at failure (a, = 1) are:

1

S 17

Pt S

Agp =y "(n+1) 1" (18)

Aoy = £,y tm T (19)

Op = Ly? (4 1)+
while from egns (16)-(18) there follows:

L, Y n" -

= 20

l (Aa) (n+1H)! (20)

Ao n+
Agy = —— — 21
o E, n (20

For real values of fatigue damage at failure 0.2 < D, < 0.8 (see Lemaitre and Chaboche
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Fig. 6. Stress—strain dependence as a tunction of n.
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(1984)) ; according to eqn (17) the parameter # should range between n = 4 and #n = 0.25.
The value of the coeflicient 7 may be found as follows. The total strain amplitude at failure
Ac/2 consists of its elastic and plastic parts and obeys Manson's Law (Hertzberg, 1988) :

Acy  Ary  Ary, o0p
—»244 = -2 - 4 —-/2—A = —L_:—n ,,~+i:I,~N ' (22)

where £, is modulus of clasticity of a virgin material, b and o3/E, arc the slope and one
reversal intercept of the clastic part of the curve, while ¢} is the fatigue ductility coeflicient.
Since (Hertzberg, 1988, p. 503):

Aep, Aoy
Ey=F == =i} (23)
and
Ae = Ae— Aep = Ae—Agy, (24)
where
Ao,
A‘:E = -Ef' (25)

and while g, is the endurance limit of a real (not ideally smooth) specimen, for a stress-
controlled test (Ae = Ag,) eqns (21)-(25) produce the following result :

20':5'N,;: - AO'E
2E NG

(26)

For example, for the SAE 4340 steel (Hertzberg, 1988, p. 504); 6% = 1200 MPa,
£ =058, b= ~0.09, c = —0.57, ¢ = 281 MPa, assuming £, = 2 x 10°* MPa, depending
on the stress level applied, i.e. depending on the number of cycles at failure, the coefficient
n {eqn (26)) is, for example: n = 0.4 at N = 10*, n = 0.88 at N = 10° and n = 2.93 at
Ng = 5x 10, while the corresponding values for damage (eqn (17)) are: D, = 0.71, 0.53
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and 0.25. As it is seen values of 4> n > 0.25 estimated above and corresponding to
0.2 < Dy < 0.8, respectively. are quite real.
From eqns (14). (17) and (18) the strain range and normalized strain range are:

AE — (},ak)quin {27}

Aa_a~kn<D)l" 9
Agy D.) (28)

From eqns (16). (17) and (20) the normalized crack length is related to damage and
normatized damage as:

n

gk
(n+l)n+ta

<M) _ (1_ B 0
n+1 n+l Dp/ D, :

Definition of damage as given in (14) assumes that the initial damage is not equal to
zero, since the initial crack length a, # 0. From (29) the initial damage may be found as
the solution of the following equation:

(t—Dy'D (29)

u

n

R gk e — "
(n»{»—l)"”d“ (1 =D\ D,. 30

For small values of the initial damage (1 — D) = 1, such that, in that casce:

1

D, > " af (32
"=(I1+|)"H u- 32)
Figures 8 -11 present damage and strain accumulation diagrams in terms of the nor-
malized life N/N, and for various cocflicients ay. ¢, m1, &, 1. For example, for given initial
crack length a,, choosing m (typically m = 2) and ¢ (typically ¢ = 1), then using cqn (12),
normalized crack length a is found as a function of the normalized life N/NV,, such as in
Fig. 3. The initial damage is found from eqn (31) for a set of typical parameters n, say
between n = 1/2 and n = 4. Finally, damage D, normalized damage D/D, and normalized
strain Ag/Ag, arc found from egns (29), (30) and (28), respectively. Unlike damage curves
given in Fig. 8, normalized damage curves in Fig. 9, for the same values of parameters used,
almost overlap cach other (especially for small initial flaws a,), indicating that this could
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Fig. 8. Damage versus normalized life for a, = 0.1
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be a better definition for damage. The shapes of damage and strain curves shown in Figs
8-11 arc in a good qualitative agreement with well-known experimental results of fatigue
damage (Chaboche, 1988 ; Socic et al., 1983).

The damage model developed here includes both initiation and short crack propagation
phases. Also the damage law has a nonlinear evolution and accumulation and, therefore,
should be able to describe the cumulative damage under nonperiodic loading. However, a
successful fatigue damage model should reflect the mean-stress influence, and this remains
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to be done next. Also, values of some constants in the analytical model, such as AK,,. a,.
m etc., and possible inclusion of the crack closure concept, are to be related to the
experimental verification in further development of this model.
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